Evaluation of brainstem disruption following penetrating captive-bolt shot in isolated cattle heads: comparison of traditional and alternative shot-placement landmarks

JN Gilliam* †, JK Shearer‡, RJ Bahr†¥, S Crochik†¤, J Woods§, J Hill§, J Reynolds# and JD Taylor¶

1 Veterinary Clinical Sciences, Oklahoma State University, 1 Farm Rd, Stillwater, OK, USA
2 Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
3 Innovative Livestock Solutions, Blackie, AB, Canada
4 College of Veterinary Medicine, Western College of Health Sciences, Pomona, CA, USA
5 Veterinary Pathobiology, Oklahoma State University, 1 Farm Rd, Stillwater, OK 74078, USA
6 119 Oakridge Drive, Stillwater, OK 74074, USA
7 VCA-South Shore Animal Hospital, 595 Columbian St, South Weymouth, MA 02190, USA
* Contact for correspondence and requests for reprints: john.gilliam@okstate.edu

Abstract

Currently recommended landmarks for captive-bolt euthanasia of cattle often result in failure to penetrate the brainstem. The purpose of this study was to evaluate the ability to disrupt the brainstem by placing the shot at a higher position on the head. Intact heads from euthanased animals or natural mortalities were used for this study. Heads were grouped as adult (> 2 years), young (6–24 months) and neonate (< 1 month) and randomly assigned to either the LOW group (the intersection of two lines drawn from the medial canthus to the top of the opposite ear) or the HIGH group (midline halfway between the top of the poll and an imaginary line connecting each lateral canthus). Each head received a single shot from a CASH penetrating captive bolt with bolt length and power load selected based on manufacturer’s recommendations. Computed tomography images of each head were evaluated independently by two veterinary radiologists. Brainstem disruption was assumed to occur if the bolt passed caudal to the presphenoid bone and deep to the third ventricle and was within 1.5 cm of midline. Brainstem disruption occurred in 16/18 adult HIGH and 7/14 adult LOW heads, 13/16 young HIGH and 11/19 young LOW heads, and 11/11 neonate HIGH and 14/14 neonate LOW heads. The higher shot location landmarks used in this study increased the probability of disrupting the brainstem when adult cattle were shot with a penetrating captive bolt which should reduce the risk of regaining sensibility. Reliable brainstem disruption is a precondition for considering penetrating captive bolt as a single-step euthanasia method. Further research is needed to determine if this method will reliably ensure a humane death.

Keywords: animal welfare, brainstem, captive bolt, cattle, euthanasia, shot placement

Introduction

Humane euthanasia of cattle often presents significant challenges for veterinarians and cattle producers. Cattle in need of euthanasia may be found in a wide variety of circumstances, many of which can make humane euthanasia difficult to achieve. These challenges may be greatest when a large number of animals need to be euthanased in a short period of time, such as might occur with a natural disaster or epidemic animal disease outbreak. Based on the recommendations from the American Veterinary Medical Association (AVMA), there are three approved methods of euthanasing cattle (AVMA 2013). Intravenous injection of a barbiturate, such as pentobarbital sodium, is commonly used to euthanase a variety of animal species. While this method is effective for cattle, it is only available to veterinarians and can result in dangerous environmental residues if carcases are not disposed of properly. Physical disruption of the brain via gunshot is effective and readily available in many locations. While effective and potentially applicable to a mass depopulation setting, gunshot requires skilled personnel and has significant safety concerns. Firearm use is also subject to legal restrictions in some areas. The final approved method of euthanasia is physical disruption of the brain via a captive-bolt device. Captive bolts are used routinely for stunning animals prior to slaughter and are available in penetrating and non-penetrating configurations. Penetrating captive bolts (PCB) are used most commonly for cattle. These devices render the animal unconscious via concussive forces generated when the bolt strikes the skull (Daly & Whittington 1989; Gregory & Shaw 2000). The bolt, often accompanied by bone fragments, penetrates the brain causing additional